
A SmartBear White Paper

Meeting Federal Regulations for
Airborne Software Certification with
Code Review

http://smartbear.com/products/software-development/code-review

http://smartbear.com/products/software-development/code-review
http://smartbear.com/products/software-development/code-review
http://smartbear.com/products/software-development/code-review

Introduction

The V-22 Osprey helicopter uses a tilting wing and rotor system
in order to fly like an airplane and land like a helicopter. In one
test flight, the hydraulic system failed just as the pilot was tilting
the wing to land. A previously undiscovered error in the aircraft’s
control software caused it to decelerate in response to each of
the pilot’s eight attempts to reset the software. The aircraft had
a built-in back-up system to handle such failures, but it had not
been tested under those precise conditions, and the defect in the
back-up system’s software had not been found. The uncontrol-
lable aircraft fell 1,600 feet (490 m) and crashed in a forest. For
the second time that year, the V-22 was grounded.1

The Problem is Complexity

As systems become more capable, it becomes harder to test all
of the ways they will be used in advance. Once you test software
and fix all of the problems found, the software will always work
under the conditions for which it was tested. The reason there
are not more software tragedies is that testers have been able
to exercise these systems in most of the ways they will typically
be used. But all it takes is one software failure and a subsequent
lawsuit to seriously damage a company’s reputation.

Test-and-fix approaches are vital dynamic testing approaches.
Whether performed on individual units or the entire system, these
dynamic approaches share one common shortcoming: they all
rely on test cases.

Test case scenarios are constructed from the same source docu-
ments that developers use, such as requirements and specifica-
tion documents. These documents are much more comprehensive
at defining what the finished product should do, rather than what it
shouldn’t do. Developers inject about 100 defects into every 1,000
lines of the code they write.2 Many of these defects will have no
impact on the test case scenarios designed for testing. Yet, they
could have devastating, unforseen effects in the future.

If quality cannot be tested in, then what?

Software product quality assurance in the aerospace industry has
been intertwined with process assurance for over 30 years. At

1“Saving The Pentagon’s Killer Chopper-Plane,” Wired, July 2005

2 “The Software Quality Challenge,” Watts S. Humphrey, CrossTalk, June 2008

 NASA’s Goddard Space Flight Center, software quality assurance
(SQA) is assigend to the office of Systems Safety and Mission
Assurance. In 1997, the SSMA office created a list of tasks to be
performed at each of 6 phases of the software development life
cycle, from concept and requirements gathering through design,
development, testing and maintenance. Within the development
phase, the very first requirement of SSMA is “perform code walk-
throughs and peer reviews.”3

DO-178C, “Software Considerations in Airborne Systems and
Equipment Certification” is the title of the published document by
which the certification authorities such as FAA, EASA and
Transport Canada will approve all commercial software-based
aerospace systems. DO-178C was published in January 2012 and
replaces DO-178B which was last revised in 1992.

Chapter 6.1 defines the purpose for the software verification
process. The more recent DO-178C adds the following statement
about the Executable Object Code: “The Executable Object Code
is robust with respect to the software requirements that it can
respond correctly to abnormal inputs and conditions.” Compare
that to the earlier version of this statement in DO-178B: “The
Executable Object Code satisfies the software requirements (that
is, intended function) and provides confidence in the absence of
intended functionality.” This addition points out the importance of
identifying and rectifying unintended consequences of the code.
(DO-178B and DO-178C)

The guidelines use the terms “verification” and “validation” (also
referred to as “V&V”) to encompass software quality process
requirements. While the terms are sometimes interchanged,
validation generally refers to traditional, dynamic testing of the
“by objective evidence.” Verification, on the other hand, refers to
confirmation by examination.

In a software development environment, software verification is
confirmation that the output of a particular phase of development
meets all of the input requirements for that phase. Software test-
ing is one of several verification activities intended to confirm that
the software development output meets its input requirements.
Other verification activities specifically listed include:

¿¿ Walk-throughs

¿¿ Various static and dynamic analyses

¿¿ Code and document inspections

¿¿ Module level testing

¿¿ Integration testing

As Capers Jones points out, "A synergistic combination of formal
inspections, static analysis and formal testing can achieve
combined defect removal efficiency levels of 99%." Where tool
assisted peer review stands out is in code and document
inspections as well as providing a central location for reviewing
test cases, plans and the results of static analysis tools.

3 Software Quality Assurance Testing At NASA,” Linda Rosenberg, PhD,

Goddard Spaceflight Center, NASA

4 Capers Jones, Combining Inspections, Static Analysis and Testing to Achieve

Defect Removal Efficiency Above 95%, January 2012.

While some believe static analysis of the code is best done by au-
tomated tools, code reviews are actually more effective at finding
errors than automated tools. Most forms of testing average only
about 30% to 35% in defect removal efficiency levels and seldom
top 50%. Formal design and code inspections, on the other hand,
can acheive 95% in defect removal efficiency.4

There are some verification requriements that can only be satis-
fited by code review. “While analysis may be used to verify that all
requirements are traced, only review can determine the correct-
ness of the trace between requirements because human inter-
pretation is required to understand the implications of any given
requirement.The implications must be considered not only for the
directly traced requirements but also for the untraced but appli-
cable requirements. Human review techniques are better suited to
such qualitative judgments than are analyses.”5

The software verification process is aimed at showing the correct-
ness of the software. It consists of requirement reviews, code re-
views, analyses, and testing. Reviews are to be regularly conduct-
ed throughout the software development process to ensure that
the Software Development Plan is being followed. All steps in the
decomposition of high-level system requirements to object code
are considered in this process. DO-178B and DO-178C require
examination of the output of all processes to check for software
correctness and to find errors. DO-178C (section 6) requires that:

1. The high–level software requirements are correctly and
completely formed from the system requirements

2. The high-level requirements are complete and consistent

3. The software architecture correctly and completely meets all
high-level requirements

4. The low-level requirements correctly and completely fulfill the
software architecture

5. The low- level requirements are consistent and correct

6. The software code correctly satisfies all low-level
requirements

7. All code is traceable to one or more low-level requirements

8. The object code correctly implements the software on the
target computer, and it is traceable and complies with all low-
level and high-level requirements6

The guidance is clear that all code reviews must be in writing.
Otherwise, there is no proof it has been performed. Statements
about the code in general, specific lines, and specific issues, must
all be tied to the person, time and date of their identification. If
needed, this data should be presented as both comments and
metrics to allow an accounting of the development process.

4 “Measuring Defect Potentials And Defect Removal Efficiency,” Capers Jones, CrossTalk, June 2008
5“An Analysis of Current Guidance in the Certification of Airborne Software”, Ryan Erwin Berk, MIT, 2009
6 Certification of Safety-Critical Software Under DO-178C and DO-278A, Stephen A. Jacklin, NASA Ames
Research Center

Firms may perform, manage and document the process manually,
as long as they use “appropriate controls to ensure consistency
and independence.” Source code evaluations should be extended
to verification of internal linkages between modules and layers
(horizontal and vertical interfaces), and compliance with their
design specifications. Documentation of the procedures used and
the results of source code evaluations should be maintained as
part of design verification.7

The DO-178C does not go into detail as to how code reviews and
evaluations should be performed. While thousands of organiza-
tions have successfully implemented and defended peer code
reviews successfully, many have failed. The difference most often
comes down to poor implementation strategies that can be readily
addressed:

¿¿ Reviews are too long. After just a few hours, attention
wanders and effectiveness decreases. All-day code reviews
can seem almost painful. Keep reviews short, no more than
one or two hours per day. In that time, developers will be able
to review between 150 and 300 lines of code, depending on
complexity. Not surprising, this rate of review also provides
the highest rate of defects identified per line of code (defects
/ LOC).

¿ Reviews are seen as an additional task. It is especially
true when a review backlog builds up. Rather than let them
become a bottleneck, make reviews a daily activity or take
them as they come in. Let the artifact review serve as a break
from a hard problem or a way to transition between tasks

colleague’s comments as just their opinion. Make it easy for
reviewers to annotate the specific code or file in question and
to get other reviewers to weigh in.

¿¿ Remote reviews can be challenging. Distributed teams are
a given, and bringing teams together for reviews is at odds
with the need for regular, brief reviews. Instead, facilitate
remote reviews with tools designed for remote collaboration
in general and peer code review, specifically.

¿¿ Documentation is not automated. The administrative
burden of documenting, archiving and distributing this
living document can be overwhelming. Use tools that make
compliance documentation an automatic by-product of the
review.

One of the most important contributions a company can make
to successful adoption of peer reviews are the tools it provides
its teams. The right tool set will enable each development team
to

7 General Principles of Software Validation; Final Guidance for Industry and FDA

Staff, January 11, 2002

¿ Comments are seen as subjective. It is easy to discount a

About SmartBear Software

SmartBear is the choice of more than four million software
professionals and over 25,000 organizations in 90 countries that
use its products to build and deliver the world’s best software
applications. SmartBear’s user-centric application management
solutions support key software delivery processes of
development, testing, API readiness, and application
performance management across desktop, web, and mobile
platforms. Get started at www.smartbear.com.

SmartBear Software 450 Artisan Way, Somerville, MA 02145 +1 617.684.2600
www.smartbear.com
©2016 by SmartBear Software, Inc. Specifications subject to change.
WP-COL-071113-WEB

find its own best way to do code reviews, enabling a bottom-up
approach to code review design and ensuring fuller achievement
of potential gains and regulatory compliance.

Some characteristics of a code review tool set to look for include:

1. Supports team-designed rules and processes. Teams should
be able to determine review intervals, workflows and specific
tasks to be accomplished during the review while the tool
supports and manages adherence.

2. Supports each team’s preferred mode of interaction.
Whether side-by-side, remote real-time or asynchronous,
or a combination, the team should decide. The tool should
support before and after views of code and document
changes and threaded contextual chat with references to files
and line numbers.

3. Provides seamless integration with SCM systems. To start
reviews easily and expedite them, developers should be
able to point to the code that needs review and have those
files extracted automatically. Tools add tangible value to this
process by automating the collection and distribution of these
files.

4. Ensures that documents are integrated within the review
process. A standardized peer review process enables all
project-related documents (e.g. PDF, MS Office, HTML,
images, schematics, intranet and web-based document
management system) to be reviewed the same way, making
document reviews less frustrating for developers.

5. Enables accurate reporting. Meaningful metrics play a critical
role in the reporting process to indicate progress and current
status. Useful metrics used in meeting review milestones and
audit requirements include man-hours spent in review, defect
data, and lines of code inspected, as well as review approval
and electronic signature status.

It should be noted that this paper has steered away from discuss-
ing any particular software development methodology. A peer
code review process can be implemented within waterfall, Agile
and other methodologies with equal success. The point to focus
on is that not only will implementing peer code and docuemnt
reviews make the products your company produces better, it will
make the processes and the people that produce them better as
well.

Peer reviews are a powerful tool for eliminating defects, but
achieving compliance can be burdensome. Even in organizat-
ions where peer reviews have been “adopted,” they are skipped
as much as 30% of the time, primarily because they are
inadequately supported.8

8 Mario Bernhart, Andreas Mauczka, Thomas Grechenig Research Group for Indus-
trial Software (INSO) Vienna University of Technology, Austria, 2010

Too often, organizations believe they can have ad-hoc develop-
ment processes, and then use an inspection process at the end to
remove all defects. It just will not happen. Industry statistics indi-
cate that for every four errors pulled out, one new error is injected.
Therefore, only portions of defects are actually removed if the at-
tempt is applied only to the end of the implementation process. To
approach zero defects, inspection must be an iterative process.9

For years, it was believed that the value of inspections is in finding
and fixing defects. However in examining code inspection data,
it becomes clear that inspections are beneficial for an additional
reason. They make the code easier to understand and change. An
analysis of data from a recent code inspection experiment shows
that 60% of all issues raised in the code inspections are not prob-
lems that could have been uncovered by latter phases of testing
or field usage because they have little or nothing to do with the
visible execution behavior of the software. Rather they improve
the maintainability of the code by making the code conform to
coding standards, minimizing redundancies, improving language
proficiency, improving safety and portability, and raising the qual-
ity of the documentation — benefits which are not possible from
automated testing.10

Conclusion

Peer reviews create an environment of shared understanding
and collaboration. As teams review and comment on each
other’s files, whether in real-time or asynchronously, they all get
better. In the end, the peer review provides a platform for continu-
ous process improvement, leading to improved standards, better
developers, better efficiency, a higher quality finished product, and
the peace of mind that comes from knowing the organization can
prove compliance.

9 Quality ProcessesYield Quality Products,” Thomas D. Neff, CrossTalk, June 2008

10 “Does the Modern Code Review Have Value?” H. Siy, Software Maintenance 2009

http://www.smartbear.com
http://www.smartbear.com
http://smartbear.com/products/software-development/code-review
http://www.smartbear.com

	GoBack

